
A NOTE ON THE IMPLEMENTATION OF AUDIO PROCESSING BY SHORT-TERM
FOURIER TRANSFORM

James A. Moorer

1111 Alligator Drive
Panacea, FL 32346, USA

jamminpower@earthlink.net

ABSTRACT

Short-term Fourier Transform (STFT) forms the backbone of a
great deal of modern digital audio processing. A number of pub-
lished implementations of this process exhibit time-aliasing dis-
tortion. This paper reiterates the requirements for alias-free pro-
cessing and offers a novel method of reducing aliasing.

Index Terms— DFT, STFT, Convolution, Aliasing

1. INTRODUCTION

A number of DSP processing techniques employ the Short-term
Fourier Transform (STFT). These include Non-negative Matrix
Factorization [1][2], binary filtering [3], broadband denoising [4]
and many others. Some implementations of these algorithms ex-
hibit significant audible artifacts. Some of the published imple-
mentations of these techniques show a lack of attention to issues
of time-aliasing distortion, which is one form of artifact that can
be audible and annoying. We show that all (synchronous) STFT
processing is a form of linear filtering. This makes it straightfor-
ward to identify when time-aliasing is introduced and suggests
ways to eliminate it. We introduce the concept of “brick-wall”
windowing, implemented by a frequency-domain convolution to
limit implied impulse response lengths. For binary filtering, we
introduce the concept of an “atom” representing a single point in
the frequency domain that has limited extent in time, thus allow-
ing alias-free binary filtering.

2. HISTORICAL NOTE

In 1966, Thomas G. Stockham, Jr., published a seminal paper [5]
describing the implementation of digital convolution by use of the
Fast Fourier Transform [6]. The point of mentioning Stockham is
just to note that this technique has been known for at least 50 years.

Since Stockham, a great deal of progress has occurred. Many mod-
ern DSP techniques have the computational paradigm of starting
with one or more STFT (Short Term Fourier Transform) se-
quences, then producing a corresponding STFT sequence. The out-
put is then produced by taking the inverse FFT of each frame, then
overlapping and adding into the output sequence. In the process,
some examples of published implementation code violate, explic-
itly or implicitly, the basic principles enumerated by Stockham in
1966. In this paper, we identify a common error leading to time-
aliasing and suggest a novel way to correct it. This paper is ex-
tracted from a more complete discussion in [7].

3. SHORT-TERM FOURIER TRANSFORM

Let us define the padded STFT of an audio signal x(n) as follows:

𝑋𝑋𝑘𝑘(𝑛𝑛) = ∑ 𝑤𝑤(𝑚𝑚)𝑥𝑥(𝑛𝑛 −𝑚𝑚)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝑀𝑀𝑁𝑁−1
𝑚𝑚=0 (1)

where

n Time index
k Frequency index, 0 ≤ 𝑘𝑘 < 𝑀𝑀
N Number of input points per frame
M Transform size (M≥N)
w(m) Window function

This calculation is performed at certain fixed time intervals that
is called the “hop size” or the “frame rate”.

From one or more of these sequences, we then produce a new
STFT sequence 𝑋𝑋�𝑘𝑘(𝑛𝑛) . We can then synthesize an output se-
quence, 𝑥𝑥�(𝑛𝑛), by taking the inverse transform of each frame, then
overlapping and adding to form the output..

4. STFT IS LINEAR FILTERING

Knowing nothing about how 𝑋𝑋�𝑘𝑘(𝑛𝑛) was formed, what is the rela-
tion between 𝑋𝑋�𝑘𝑘(𝑛𝑛) and 𝑋𝑋𝑘𝑘(𝑛𝑛)? If the input and output frames
have the same phases, then their relation is that the output is the
result of applying a zero-phase filter to the input. This observa-
tion is independent of how the output frames were computed. We
can make this explicit by calculating a gain function as follows:

 𝐺𝐺𝑘𝑘(𝑛𝑛) ≡ 𝑋𝑋�𝑘𝑘(𝑛𝑛)
𝑋𝑋𝑘𝑘(𝑛𝑛)

(2)

Assuming we take care not to divide by zero, 𝐺𝐺𝑘𝑘(𝑛𝑛) is the transfer
function of a zero-phase filter that will transform that input to the
desired output. Since 𝐺𝐺𝑘𝑘(𝑛𝑛) defines a linear filter, it has an im-
pulse response, and what we are performing is a convolution. Note
that the input and output frames need not have the same phase. In
that case, the filter will not have linear phase, but it is still a linear
filter and has an impulse response. In general, the transfer function
will be different in each STFT frame and will represent a time-
varying filter. Limiting time-aliasing in each frame is sufficient to
produce an alias-free overall result.

5. IMPULSE RESPONSE AND CONVOLUTION

How long is the impulse response of this filter? Can it be a single
point? It is only a single point if the implied filter is just a gain
change. Any other transfer function will have a non-trivial impulse
response. Let us say that the impulse response of this filter is K
points in length (or that it can be windowed to K points in length
without excessive distortion). We know that we need the size of
the transform to be at least N+K-1 in length or we will get time-
aliasing due to the circular nature of convolution in the digital do-
main [5]. Since these transfer functions are generated algorithmi-
cally from unknown data, we can generally only loosely bound the
length of the impulse responses.

6. LIMITING IMPULSE RESPONSE LENGTH

How do we limit the length of the impulse response implied by the
transfer function 𝐺𝐺𝑘𝑘(𝑛𝑛)? We can take its inverse transform, and if
the significant part of the impulse response is less than M points in
length, then we know that we can force its length to be less than
M-N+1 by simple windowing in the time domain. If the inverse
transform does not seem to die out over M points, then it is proba-
bly longer than M, and longer transforms (more padding) must be
used, else time-aliasing distortion will be introduced. We must al-
ways use transforms long enough to encompass the longest im-
pulse response that the input/output transfer function can exhibit.
Ideally, we would use a transform with enough padding so that the
significant portion of the calculated impulse response of 𝐺𝐺𝑘𝑘(𝑛𝑛) is
less than M-N+1 points in length.

7. IMPLEMENTING A “BRICK-WALL” WINDOW

The process of time-limiting an impulse response is a well-known
one. We multiply the first M-N points by a window function, then
we zero the remaining points. This is analogous to a band-limiting
filter, except that it is applied in the time domain. Since band-
limiting filters are often called “brick-wall” filters, we might call
this a “brick-wall” window. Applying a time-domain window to
the impulse response of 𝐺𝐺𝑘𝑘(𝑛𝑛) would appear to involve two con-
secutive FFTs – one to inverse transform 𝐺𝐺𝑘𝑘(𝑛𝑛) to the time do-
main for windowing, then one more to transform it back to the
frequency domain for application. We can implement an approx-
imation to this process by a convolution in the frequency domain
using the transform of the desired time-domain window function.
The approximation comes by limiting the number of non-zero
points in the frequency-domain convolution kernel. The more
terms we use in the convolution kernel, the closer we come to the
ideal brick-wall window, but at some point, the computational de-
mands exceed what would be required for the direct implementa-
tion involving two transforms noted above.

8. AN EXAMPLE WINDOW KERNEL

Let us illustrate the issue with a concrete example. We will take
M = 2N, so that our input sequence will be taken N points at a
time, and we will have to limit the length of the impulse response
to N+1 points. For simplicity, let us round that down to just N
points. In the time domain, we might choose a window for the
impulse response to be N points of a Hamming window, followed

by N zeros. Figure 1 shows a half-length Hamming window im-
plemented directly, versus an implementation as a frequency do-
main convolution of 𝐺𝐺𝑘𝑘(𝑛𝑛) with a 5-point kernel and a 7-point
kernel. The exact values for the 7-point kernel are (-0.9854, 3.68,
-7.0597, 8.64, -7.0597, 3.68, -0.9854). For convenience, these
kernels were generated by simply applying a 5 and 7-point rec-
tangular (Fourier) window to the exact transform of the half-
length Hamming window. There are surely better ways to pro-
duce suitable kernels.

This simple 5-point convolution kernel gives us about 23-dB of
rejection of the impulse response beyond N points. This is gener-
ally enough for most audio applications, unless the transfer func-
tion exhibits sharp slopes. The 7-point kernel gives over 30 dB of
rejection.

Figure 1: Half-length Hamming window used to produce a fre-
quency-domain convolution kernel to implement some
amount of time windowing to suppress the impulse response
beyond N points. Only the upper wing of the symmetric kernel
is shown.

9. SYNTHESIS FROM NMF IS LINEAR FILTERING

NMF (“Non-Negative Matrix Factorization”) is a useful tool for
a number of tasks. I will discuss one use of it here, which is the
so-called “source separation” problem. In general, the idea is that
you have two sounds that have largely independent statistics. We
will use NMF to select spectral components thought to represent
one source or another [1].

In NMF, we approximate a vector (such as a magnitude-spectrum
of a bit of audio) by a weighted sum of other example vectors. We
constrain the weights to be non-negative. Magnitude spectra of
real sequences are, by definition, non-negative. We represent this
factorization symbolically as follows:

 𝑉𝑉 ≈ 𝑊𝑊𝑊𝑊 (3)
Where

V vector, such as a magnitude spectrum
H matrix of many such vectors
W matrix of non-negative weights

An example of this source separation by NMF might be separating
a mixture of male and female speakers talking simultaneously.
You start by building to libraries, 𝐻𝐻𝑚𝑚 and 𝐻𝐻𝑓𝑓 , consisting of
many, many magnitude spectra of male speech and female speech.
We then take the speech mixture to be separated and represent it
by a sequence of transforms taken at some frame rate and the same
frame size as those in the libraries. For each frame, we then ap-
proximate the magnitude spectrum first using the male library
then the female library. The phases are generally taken directly
from the input mixture. There are many techniques available for
calculating the weights in clever and efficient ways [2]. As noted
in [1], constraints can be applied to guide the process. Ultimately,
however the resulting magnitude spectrum is computed, we end
up with a sequence of frames, 𝑋𝑋�𝑘𝑘(𝑛𝑛). Consequently, for each
frame, we can compute the transfer ratio of a zero-phase filter,
𝐺𝐺𝑘𝑘(𝑛𝑛), as noted in equation (2). This transfer function has an im-
pulse response that may or may not be longer than M-N+1 points
in length. Figure 2 shows an example of the inverse transform of
one frame of 𝑋𝑋�𝑘𝑘(𝑛𝑛) taken from a NMF source-separation task
with M=2N.

Figure 2: An example of a synthesized output frame from an
NMF separation task with 2:1 padding (M=2048, N=1024).
Middle plot is implied magnitude transfer function. Bottom is
centered impulse response of implied transfer function

In the case shown, the length of the impulse response correspond-
ing to 𝐺𝐺𝑘𝑘(𝑛𝑛) is clearly greater than or equal to N+1 points. With-
out padding or windowing, there will be time-aliasing that may be
audible.

Note also that the impulse response of 𝐺𝐺𝑘𝑘(𝑛𝑛) extends both back-
wards and forwards in time. This is a natural characteristic of a
zero-phase filter. In addition to adding sufficient padding and
possibly limiting the length of the impulse response of 𝐺𝐺𝑘𝑘(𝑛𝑛), it is
necessary to circularly shift the synthesized frame by (M-N)/2
points. Adding padding by itself without circularly shifting the re-
sult before the overlap-add step leaves a discontinuity at the be-
ginning and end of the frame that will be audible. Note that the
shift can be done on input. That is, rather than padding the input
data by annexing zeros, one may imbed the windowed input data
in the middle of the analysis window with an equal number of
zeros before and after the input data. The centering has to be done
somewhere – either on the input side or the output side. Note that
in many cases, it is sufficient to add centering and padding to

NMF to reduce time aliasing to inaudible levels. That is, it is often
not necessary to explicitly window the impulse response of the
implied transfer function, but simply to use sufficient padding
(e.g. 4:1 or 8:1) and centering the data in the window, trusting that
the filters produced will not be too sharp. Much of the time, this
will be the case.

10. BINARY FILTERING IS STILL FILTERING

It is sometimes interesting to construct a “binary” filter. That is, a
filter with a magnitude transfer spectrum that consists of only
ones and zeros [3]. Although this is somewhat of an artificial con-
straint, as any natural sound may have contributions to each time-
frequency point from a number of sources, the restriction to ones
and zeros greatly simplifies the separation algorithm design.
Without interpreting the ones and zeros, we can independently
raise the question of audio quality. That is, given a desired transfer
function in the form of a binary mask, how do we make it sound
as good as possible? We start by examining the sources of distor-
tion. In this paper, we look at only one type of distortion, which
is time aliasing.

The previous discussion about padding assumes that the implied
transfer function impulse response decays to zero, so that making
the analysis window larger (i.e. increasing the amount of padding)
will always result in an impulse response that decays below any
arbitrary threshold level. It is reasonable to ask when this is true
and when it is not.

Consider the impulse response of a single time-frequency point.
This can be considered the “atom” of binary filtering. A single
point in the frequency domain, surrounded by zeros, is the only
signal that does not decay with time. If we even have two consec-
utive non-zero points, the impulse response will decay and in-
creasing padding will always reveal an impulse response that is
effectively time-limited. Unfortunately, the selection algorithms
for source separation involving binary masks often produce iso-
lated frequency points. How can we deal with this? There are sev-
eral choices:

1. We could always require 2 or more adjacent frequency
points to be non-zero and work that requirement into the
selection algorithm. If more precision in the frequency
domain is required, additional padding can always be
used to increase the number of frequency points.

2. Although we compute a binary mask, we could synthe-
size a slightly different transfer function to actually per-
form the filtering just for auditioning. For example, af-
ter the binary mask is computed, we could then re-ana-
lyze the input using a 3:1 padding. At every frequency
in the original mask that is one, we could place a 3-point
Hamming window kernel – that is, (-.23, .54, -.23), cen-
tered on the frequency of the non-zero point in the orig-
inal mask. This changes the “atom” to a function that is
known to decay. This technique can be expanded to 5-
point kernels, such as Blackman windows, or even
higher-order kernels [4]. We can make time-limited
functions to approximate sequences of any number of
consecutive unit frequency bins. As noted in [4], these
functions have closed-form formulas both in the time

and frequency domains. This suggestion is, in fact, an-
other implementation of windowing through frequency-
domain convolution as previously described.

3. Any other method could be used to “smooth” the fre-
quency response. The smoothing need not be done us-
ing a linear frequency scaling, but could be adjusted to
be a Bark scale, equal-octave, or any other grouping.
The more smoothing that is used, the more the response
deviates from the original binary mask, but this can be
remediated by increasing the padding which increases
the frequency precision accordingly. By increasing the
padding, the resulting frequency response can be made
to approximate the original binary mask arbitrarily pre-
cisely.

Figure 3 shows one example of a time-limited “atom” that can be
used to implement each non-zero frequency point. This atom was
produced by the use of 1:8 padding, and consists of five consecu-
tive 5-point Blackman window kernels. This is an approximation
to a bandpass filter with a width corresponding roughly to that of
a single point in the original binary mask. Although this is suffi-
cient to guarantee freedom from time-aliasing, other artifacts due
to sharp band-edges will dominate. Some amount of frequency-
domain smoothing would be necessary to reduce this remaining
form or artifact.

Figure 3: Windowed and time-limited approximation to a spectral
impulse at frequency bin 25. This was produced by starting with
a spectrum of an impulse response padded 1:8. Five consecutive
sets of 5-point Blackman window coefficients were summed to
produce a filter roughly one unit wide in the original (unpadded)
domain.

The frame rate interacts with the window chosen for the approxi-
mation. We know that the Hamming and Hann windows can be
used the a hop size of N/2 without introducing any time-domain
amplitude modulation. Use of a 2nd-order window, such as Black-
man, requires us to reduce the hop size to N/4 to eliminate ampli-
tude modulation.

Some researchers are using “soft masks” rather than strict binary
filtering, e.g. [8]. This relaxes the constraint that each frequency
point be either 0 or 1. By itself, of course, this does not guarantee
freedom from time-aliasing. Steps must still be taken to limit the
implied impulse response length.

11. SUMMARY

Processing using the short-term Fourier transform can be formu-
lated as a linear filter, regardless of how the output magnitude
spectra are generated. As such, the transfer function for each frame
can be analyzed to determine if it introduces time-aliasing distor-
tion. We introduce a novel frequency-domain convolution that im-
plements an approximation to a “brick-wall” window function. In
many cases, simple padding and “centering” of the analysis data is
sufficient to reduce time-aliasing distortion to inaudibility. For
more radical filters, such as binary filters, time-aliasing can only
be reduced in general by some kind of smoothing in the frequency
domain. One solution involves replacing the “atom” with a kernel
that is known to decay to zero and increasing the padding size to
accommodate the chosen kernel. The frame rate may also need to
be increased to avoid amplitude-modulation distortion.

In all cases, however, formulating STFT processing as a linear fil-
tering operation leads us directly to these guidelines and tech-
niques such that time-aliasing distortion can always be avoided
with relatively modest penalties in time and/or complexity.

12. ACKNOWLEDGMENT

Many thanks to Paris Smaragdis and Gautham Mysore for numer-
ous suggestions and encouragement in the creation of this paper,
and to the reviewer’s constructive recommendations.

13. REFERENCES

[1] Tuomas Virtanen “Monaural Sound Source Separation by
Nonnegative Matrix Factorization With Temporal Continuity
and Sparseness Critera” IEEE Transactions on Audio,
Speech, and Language Processing, Vol. 15, No. 3, March
2007, pp. 1066-1074

[2] Lee and Seung “Algorithms for Non-Negative Matrix Factor-
ization” in Advances in Neural Information Processing Sys-
tems 13: Proceedings of the 2000 Conference. MIT Press
pp. 556–562

[3] Pedersen et al. “Two-Microphone Separation of Speech Mix-
tures” IEEE Transactions on Neural Networks, Volume 19,
No. 3, March 2008, pp. 475-492

[4] James Moorer and Mark Berger “Linear Phase Bandsplitting”
Audio Engineering 76th Conference, New York, 1984

[5] Thomas G. Stockham, Jr., “High-Speed Convolution and
Correlation”, 1966 Spring Joint Computer Conference,
AFIPS Conference Proceedings, Volume 28, pp 229-233

[6] J.W. Cooley and J.W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Mathematics of Co-
mutation, Volume 19, Number 90, April 1965, pp. 297-301

[7] James Moorer, “NMF, WOLA, And Binary Filtering: Avoid-
ing the Curse of Time-Aliasing”. http://www.jammin-
power.com/PDF/NMF_WOLA_Binary_Filtering.pdf

[8] Antoine Liutkus, Roland Badeau. Generalized Wiener _lter-
ing with fractional power spectrograms. 40th International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), Apr 2015, Brisbane, Australia. IEEE, 2015.

